Signetics

7495, LS95B Shift Registers

4-Bit Shift Register Product Specification

Logic Products

FEATURES

- Separate negative-edge-triggered shift and parallel load clocks
- Common mode control input
- Shift right serial input
- Synchronous shift or load capabilities

DESCRIPTION

The '95 is a 4-Bit Shift Register with serial and parallel synchronous operating modes. It has serial Data (D_3) and four parallel Data (D_0-D_3) inputs and four Parallel outputs (Q_0-Q_3) . The serial or parallel mode of operation is controlled by a Mode Select input (S) and two Clock inputs $(\overline{CP}_1$ and \overline{CP}_2). The serial (shift right) or parallel data transfers occur synchronously with the HIGH-to-LOW transition of the selected Clock input.

When the Mode Select input (S) is HIGH, \overline{CP}_2 is enabled. A HIGH-to-LOW transition on enabled \overline{CP}_2 loads parallel data from the D_0-D_3 inputs into the register. When S is LOW, CP_1 is enabled. A HIGH-to-LOW transition on enabled \overline{CP}_1 shifts the data from Serial input D_S to Q_0 and transfers the data in Q_0 to Q_1 , Q_1 to Q_2 , and Q_2 to Q_3

TYPE	TYPICAL f _{MAX}	TYPICAL SUPPLY CURRENT (TOTAL)
7495	36MHz	39mA
74LS95B	36MHz	13mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE V _{CC} = 5V ±5%; T _A = 0°C to +70°C
Plastic DIP	N7495N, N74LS95BN

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74LS		
S	Input	2ul	1LSul		
Other	Inputs	1ul	1LSul		
Q	Output	10ul	10LSul		

NOTE:

Where a 74 unit load (uI) is understood to be $40\mu A I_{IH}$ and $-1.6mA I_{IL}$, and a 74LS unit load (LSuI) is $20\mu A I_{IH}$ and $-0.4mA I_{II}$.

respectively (shift right). Shift left is accomplished by externally connecting Q_3 to D_2 , Q_2 to D_1 , Q_1 to D_0 , and operating the '95 in the parallel mode (S = HIGH).

In normal operations the Mode Select (S) should change states only when both

Clock inputs are LOW. However, changing S from HIGH-to-LOW while \overline{CP}_2 is LOW, or changing S from LOW-to-HIGH while \overline{CP}_1 is LOW will not cause any changes on the register outputs.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 4, 1985

5-158

853-0576 81502

7495, LS95B

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE		INPUTS				OUTPUTS			
	s	CP ₁	CP ₂	Ds	D _N	Qo	Q ₁	Q ₂	Q ₃
Parallel load	H	X X	1	×	l h	L H	L H	L H	L
Shift right	L	+	X X	l h	X X	L H	90 90	Q1 Q1	q ₂
Mode change	1	L H X	X X L H	X X X	X X X	no change undetermined no change undetermined			

H = HIGH voltage level steady state.

h = HIGH voltage level one set-up time prior to the HIGH-to-LOW clock transition.

L = LOW voltage level steady state.

I = LOW voltage level one set-up time prior to the HIGH-to-LOW clock transition.

q = Lower case letters indicate the state of the referenced output one set-up time prior to the HIGH-to-LOW clock transition.

X = Don't care.

= HIGH-to-LOW transition of clock or mode select.

1 = LOW-to-HIGH transition of mode select.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	74LS	UNIT
V _{CC}	Supply voltage	7.0	7.0	٧
V _{IN}	Input voltage	-0.5 to +5.5	-0.5 to +7.0	٧
I _{IN}	Input current	-30 to +5	-30 to +1	mA
V _{OUT}	Voltage applied to output in HIGH output state	-0.5 to +V _{CC}	+0.5 to +V _{CC}	٧
TA	Operating free-air temperature range	0 to	70	°C

5-159

7495, LS95B

RECOMMENDED OPERATING CONDITIONS

	PARAMETER	74						
FARAMEICR		Min	Nom	Max	Min	Nom	Max	UNIT
V _{CC}	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	٧
VIH	HIGH-level input voltage	2.0			2.0			٧
VIL	LOW-level input voltage			+0.8			+0.8	٧
l _{iK}	Input clamp current			-12			-18	mA
[‡] ОН	HIGH-level output current			-800			-400	μΑ
loL	LOW-level output current			16			8	mA
TA	Operating free-air temperature	0		70	0		70	°C

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

PARAMETER			TEST CONDITIONS!		7495			74LS95B			
		TES	TEST CONDITIONS ¹			Typ ²	Max	Min	Typ ²	Max	UNIT
V _{OH}	HIGH-level output voltage	$V_{CC} = MIN, V_{IH} = MIN,$ $V_{IL} = MAX, I_{OH} = MAX$			2.4	3.4		2.7	3.4		v
Voi	LOW-level output voltage	V _{CC} = MIN, V _{IH} = MIN,		x		0.2	0.4		0.35	0.5	٧
		VIL = MAX		A (74LS)					0.25	0.4	V
V_{IK}	Input clamp voltage	$V_{CC} = MIN, I_I = I_{IK}$					-1.5		-	-1.5	V
l _t	input current at maximum	V _{CC} = MAX	V _I = 5.5V				1.0				mA
'1	input voltage	ACC - MAX	$V_i = 7.0V$							0.1	mA
		V _{CC} = MAX	V _I = 2.4V	S input			80				μΑ
lін	HIGH-level input current			Other inputs			40				μΑ
·ım	rii di Filovor impat current	VCC - IVIAX	V ₁ = 2.7V	S input						20	μА
			V - 2.7V	Other inputs						20	μА
lu .	LOW-level input current	V MAY	V = 0.4V	S input			-3.2			-0.4	mA
'IL	LOTT-IOVER INPUT CUITETT	$V_{CC} = MAX$ $V_1 = 0.4V$		Other inputs			-1.6			-0.4	mA
los	Short-circuit output current ³	V _{CC} = MAX		-18		-57	-20		-100	mA	
Icc	Supply current ⁴ (total)	V _{CC} = MAX				39	63		13	21	mA

NOTES:

- 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
- 2. All typical values are at $V_{CC} = 5V$, $T_A = 25$ °C.
- 3. los is tested with V_{OUT} = +0.5V and V_{CC} = V_{CC} MAX + 0.5V. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
- 4. Measure I_{CC} with Serial Data input and all outputs open; Parallel Data inputs grounded; Mode Select input at 4.5V and a momentary 3V, then ground, applied to the Clock inputs.

AC ELECTRICAL CHARACTERISTICS $T_A = 25$ °C, $V_{CC} = 5.0$ V

PARAMETER			7	74	74		
		TEST CONDITIONS	C _L = 15pF,	$R_L = 400\Omega$	$C_L = 15pF, R_L = 2k\Omega$		UNIT
			Min	Max	Min	Max	
f _{MAX}	Maximum clock frequency	Waveform 1	25		25	-	MHz
t _{PLH} t _{PHL}	Propagation delay Clock to output	Waveform 1		27 32		27 32	ns

NOTE:

Per industry convention, f_{MAX} is the worst case value of the maximum device operating frequency with no constraints on t_n, t_t, pulse width or duty cycle

December 4, 1985

7495, LS95B

AC SET-UP REQUIREMENTS TA = 25°C, VCC = 5.0V

PARAMETER			74		74LS		
		TEST CONDITIONS	Min	Max	Min	Max	UNIT
t _W (H)	Clock pulse width, HIGH	Waveform 1	20		25		ns
ts	Set-up time, data to clock	Waveform 2	15		20		ns
t _h	Hold time, data to clock	Waveform 2	0		10		ns
t _{en} (L)	Enable time, LOW mode Select to $\overline{\text{CP}}_1$	Waveform 3	30		20		ns
t _{en} (H)	Enable time, HIGH mode Select to \overline{CP}_2	Waveform 3	30		20		ns
t _{inh} (H)	Inhibit time, HIGH mode Select to \overline{CP}_1 (L \rightarrow H)	Waveform 3	5		20		ns
t _{inh} (L)	Inhibit time, LOW Mode Select to \overline{CP}_2 (L \rightarrow H)	Waveform 3	5		20		ns

AC WAVEFORMS

7495, LS95B

TEST CIRCUITS AND WAVEFORMS

 $V_M = 1.3V$ for 74LS; $V_M = 1.5V$ for all other TTL families.

Test Circuit For 74 Totem-Pole Outputs

DEFINITIONS

 R_L = Load resistor to V_{CG} ; see AC CHARACTERISTICS for value. C_L = Load capacitance includes jig and probe capacitance;

see AC CHARACTERISTICS for value. $R_T = Termination$ resistance should be equal to Z_{OUT}

of Pulse Generators.
D = Diodes are 1N916, 1N3064, or equivalent.

 $t_{\text{TLH}},\ t_{\text{THL}}$ Values should be less than or equal to the table entries.

MILY INPUT PULSE REQUIREMENTS

FAMILT					
	Amplitude	Rep. Rate	Pulse Width	t _{TLH}	t _{THL}
74	3.0V	1MHz	500ns 7ns		7ns
74LS	3.0V	1MHz	500ns	15ns	6ns
74S	3.0V	1MHz	500ns	2.5ns	2.5ns