Signetics # 74165 Shift Register 8-Bit Serial/Parallel-In, Serial-Out Shift Register Product Specification #### **Logic Products** - Asynchronous 8-bit parallel load - Synchronous Serial input - Clock Enable for "do nothing" mode - See '166 for fully synchronous operation #### DESCRIPTION The '165 is an 8-bit parallel load or serial-in shift register with complementary Serial outputs $(Q_7 \text{ and } \overline{Q}_7)$ available from the last stage. When the Parallel Load (\overline{PL}) input is LOW, parallel data from the D_0-D_7 inputs are loaded into the register asynchronously. When the \overline{PL} input is HIGH, data enters the register serially at the D_S input and shifts one place to the right $(Q_0 \to Q_1 \to Q_2,$ etc.) with each positive-going clock transition. This feature allows parallel-to-serial converter expansion by tying the Q_7 output to the D_S input of the succeeding stage. The Clock input is a gated-OR structure which allows one input to be used as an active LOW Clock Enable ($\overline{\text{CE}}$) input. The pin assignment for the CP and $\overline{\text{CE}}$ | TYPE | TYPICAL f _{MAX} | TYPICAL SUPPLY CURRENT (TOTAL) | |-------|--------------------------|--------------------------------| | 74165 | 26MHz | 42mA | ## **ORDERING CODE** | PACKAGES | COMMERCIAL RANGE
V _{CC} = 5V ±5%; T _A = 0°C to +70°C | |-------------|---| | Plastic DIP | N74165N | #### NOTE: For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual. # INPUT AND OUTPUT LOADING AND FAN-OUT TABLE | PINS | DESCRIPTION | 74 | |-------|-------------|------| | PL | Input | 2ul | | Other | Inputs | 1ul | | All | Outputs | 10ul | #### NOTE: A 74 unit load (ul) is understood to be $40\mu\text{A}$ I_{IH} and -1.6mA I_{II}. inputs is arbitrary and can be reversed for layout convenience. The LOW-to-HIGH transition of $\overline{\text{CE}}$ input should only take place while the CP is HIGH for predictable operation. Also, the CP and CE inputs should be LOW before the LOW-to-HIGH transition of PL to prevent shifting the data when PL is released. # PIN CONFIGURATION ### LOGIC SYMBOL # LOGIC SYMBOL (IEEE/IEC) December 4, 1985 5-300 853-0533 81502 #### LOGIC DIAGRAM # MODE SELECT - FUNCTION TABLE | | | INPUTS | | | Q _n REGISTER | | OUTPUTS | | | |-------------------|--------|--------|----------|--------|---------------------------------|----------------|--|----------------------------------|---------------------------| | OPERATING MODES | PL | CE | СР | Ds | D ₀ – D ₇ | Qo | Q1-Q6 | Q ₇ | $\overline{\mathbf{Q}}_7$ | | Parallel load | L
L | × | X
X | X
X | L
H | L
H | L-L
H-H | H | H | | Serial shift | H | L
L | ↑ | i
h | X
X | L
H | q ₀ – q ₅
q ₀ – q ₅ | q ₆
q ₆ | q ₆ | | Hold "do nothing" | Н | н | X | Х | × | q ₀ | q ₁ – q ₆ | q ₇ | \bar{q}_7 | H = HIGH voltage level. h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition. L = LOW voltage level. LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition. q_n = Lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH clock transition. X = Don't care. ↑ = LOW-to-HIGH clock transition. ## ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.) | | PARAMETER | 74 | UNIT | |------------------|--|--------------------------|------| | V _{CC} | Supply voltage | 7.0 | V | | V _{IN} | Input voltage | -0.5 to +5.5 | ٧ | | I _{IN} | Input current | -30 to +5 | mA | | V _{OUT} | Voltage applied to output in HIGH output state | -0.5 to +V _{CC} | ٧ | | TA | Operating free-air temperature range | 0 to 70 | °C | 74165 #### RECOMMENDED OPERATING CONDITIONS | | DADAMETER | | | | | |-----------------|--------------------------------|------|-----|------|------| | PARAMETER | | Min | Nom | Max | UNIT | | V _{CC} | Supply voltage | 4.75 | 5.0 | 5.25 | V | | V _{IH} | HIGH-level input voltage | 2.0 | | - | V | | V _{IL} | LOW-level input voltage | | | +0.8 | V | | 1 _{IK} | Input clamp current | | | -12 | mA | | Юн | HIGH-level output current | | | -800 | μΑ | | loL | LOW-level output current | | | 16 | mA | | T _A | Operating free-air temperature | 0 | | 70 | °C | # DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.) | | DADAMETED | TEOT | TEGT 00 VD T 0 V0 1 | | 74165 | | | |-----------------|---|--|--|-----|------------------|--------------|----------| | PARAMETER | | TEST CONL | TEST CONDITIONS ¹ | | Typ ² | Max | UNIT | | V _{OH} | HIGH-level output voltage | V _{CC} = MIN, V _{IH} = MIN, V _{IL} = MAX, I _{OH} = MAX | | 2.4 | 3.4 | | ٧ | | VOL | LOW-level output voltage | V _{CC} = MIN, V _{IH} = MIN, V _I | V _{CC} = MIN, V _{IH} = MIN, V _{IL} = MAX, V _{OL} = MAX | | 0.2 | 0.4 | ٧ | | VIK | input clamp voltage | $V_{CC} = MIN, I_I = I_{IK}$ | | | | -1.5 | ٧ | | l _l | Input current at maximum input voltage | V _{CC} = MAX, V _I = 5.5V | | | | 1.0 | mA | | | LIICH level innet assess | V - MAY V 0.4V | PL input | | | 80 | μΑ | | I _{IH} | HIGH-level input current | $V_{CC} = MAX, V_I = 2.4V$ | Other inputs | | | 40 | μΑ | | l _{IL} | LOW-level input current | $V_{CC} = MAX, V_I = 0.4V$ | PL input
Other inputs | | | -3.2
-1.6 | mA
mA | | los | Short-circuit output current ³ | V _{CC} = MAX | | -18 | | -55 | mA | | Icc | Supply current ⁴ (total) | V _{CC} = MAX | | | 42 | 63 | mA | #### NOTES: - 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. - 2. All typical values are at $V_{CC} = 5V$, $T_A = 25$ °C. - 3. Ios is tested with V_{OUT} = +0.5V and V_{CC} = V_{CC} MAX +0.5V. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second. - With the outputs open, CE and CP at 4.5V, and a clock pulse applied to the PL input, I_{CC} is measured first with the Parallel Data inputs at 4.5V, then with the Parallel Data inputs grounded. # AC ELECTRICAL CHARACTERISTICS TA = 25°C, VCC = 5.0V | PARAMETER | | PARAMETER TEST CONDITIONS | | 74 $C_L = 15 pF, R_L = 400 \Omega$ | | | |--------------------------------------|---|---------------------------|----|------------------------------------|-----|--| | | | | | | | | | f _{MAX} | Maximum shift frequency | Waveform 1 | 20 | | MHz | | | t _{PLH}
t _{PHL} | Propagation delay
Clock to output | Waveform 1 | | 24
31 | ns | | | t _{PLH}
t _{PHL} | Propagation delay PL to output | Waveform 2 | | 31
40 | ns | | | t _{PLH}
t _{PHL} | Propagation delay
D ₇ to Q ₇ | Waveform 3 | | 17
36 | ns | | | t _{PLH}
t _{PHL} | Propagation delay D_7 to \overline{Q}_7 | Waveform 3 | | 27
27 | ns | | #### NOTE: Per industry convention, f_{MAX} is the worst case value of the maximum device operating frequency with no constraints on t_r, t_{fi}, pulse width or duty cycle. December 4, 1985 ## AC SET-UP REQUIREMENTS TA = 25°C, VCC = 5.0V | | | | ; | | | |--------------------|---|---------------------------|----|-----|------| | | PARAMETER | PARAMETER TEST CONDITIONS | | Max | UNIT | | t _W | Clock pulse width | Waveform 1 | 25 | | ns | | t _W | PL pulse width | Waveform 2 | 15 | | ns | | t _S | Set-up time, D _S to clock | Waveform 4 | 20 | | ns | | t _h | Hold time, D _S to clock | Waveform 4 | 0 | | ns | | t _S (L) | Set-up time, LOW CE to clock | Waveform 4 | 30 | | ns | | t _h | Hold time, CE to clock | Waveform 4 | 0 | | ns | | ts | PL set-up time to clock | Waveform 2 | 45 | | ns | | ts | Set-up time, D ₅ and D ₇ ⁽¹⁾ to PL | Waveform 5 | 10 | | ns | #### NOTE: 1. The remaining six Data inputs and D_S are LOW. Prior to test, HIGH level data is loaded into D_7 input. ## TEST CIRCUITS AND WAVEFORMS V_M = 1.3V for 74LS; V_M = 1.5V for all other TTL families. #### Test Circuit For 74 Totem-Pole Outputs # DEFINITIONS R_L = Load resistor to V_{CC} ; see AC CHARACTERISTICS for value. C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value. $\label{eq:RT} \begin{aligned} \mathbf{R}_T &= \text{Termination resistance should be equal to } \mathbf{Z}_{OUT} \\ &\quad \text{of Pulse Generators}. \end{aligned}$ D = Diodes are 1N916, 1N3064, or equivalent. $t_{\mathsf{TLH}},\,t_{\mathsf{THL}}$ Values should be less than or equal to the table entries. | Input | Pulse | Definition | |-------|-------|------------| |-------|-------|------------| | F 4 4 4 11 V | INPUT PULSE REQUIREMENTS | | | | | | | | |--------------|--------------------------|-----------|-------------|------------------|------------------|--|--|--| | FAMILY | Amplitude | Rep. Rate | Pulse Width | t _{TLH} | t _{THL} | | | | | 74 | 3.0V | 1MHz | 500ns | 7ns | 7ns | | | | | 74LS | 3.0V | 1MHz | 500ns | 15ns | 6ns | | | | | 74S | 3.0V | 1MHz | 500ns | 2.5ns | 2.5ns | | | | 74165 ## **AC WAVEFORMS**