Signetics

74165 Shift Register

8-Bit Serial/Parallel-In, Serial-Out Shift Register Product Specification

Logic Products

- Asynchronous 8-bit parallel load
- Synchronous Serial input
- Clock Enable for "do nothing" mode
- See '166 for fully synchronous operation

DESCRIPTION

The '165 is an 8-bit parallel load or serial-in shift register with complementary Serial outputs $(Q_7 \text{ and } \overline{Q}_7)$ available from the last stage. When the Parallel Load (\overline{PL}) input is LOW, parallel data from the D_0-D_7 inputs are loaded into the register asynchronously. When the \overline{PL} input is HIGH, data enters the register serially at the D_S input and shifts one place to the right $(Q_0 \to Q_1 \to Q_2,$ etc.) with each positive-going clock transition. This feature allows parallel-to-serial converter expansion by tying the Q_7 output to the D_S input of the succeeding stage.

The Clock input is a gated-OR structure which allows one input to be used as an active LOW Clock Enable ($\overline{\text{CE}}$) input. The pin assignment for the CP and $\overline{\text{CE}}$

TYPE	TYPICAL f _{MAX}	TYPICAL SUPPLY CURRENT (TOTAL)
74165	26MHz	42mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE V _{CC} = 5V ±5%; T _A = 0°C to +70°C
Plastic DIP	N74165N

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74
PL	Input	2ul
Other	Inputs	1ul
All	Outputs	10ul

NOTE:

A 74 unit load (ul) is understood to be $40\mu\text{A}$ I_{IH} and -1.6mA I_{II}.

inputs is arbitrary and can be reversed for layout convenience. The LOW-to-HIGH transition of $\overline{\text{CE}}$ input should only take place while the CP is HIGH for predictable operation. Also, the CP and

CE inputs should be LOW before the LOW-to-HIGH transition of PL to prevent shifting the data when PL is released.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 4, 1985

5-300

853-0533 81502

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

		INPUTS			Q _n REGISTER		OUTPUTS		
OPERATING MODES	PL	CE	СР	Ds	D ₀ – D ₇	Qo	Q1-Q6	Q ₇	$\overline{\mathbf{Q}}_7$
Parallel load	L L	×	X X	X X	L H	L H	L-L H-H	H	H
Serial shift	H	L L	↑	i h	X X	L H	q ₀ – q ₅ q ₀ – q ₅	q ₆ q ₆	q ₆
Hold "do nothing"	Н	н	X	Х	×	q ₀	q ₁ – q ₆	q ₇	\bar{q}_7

H = HIGH voltage level.

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition.

L = LOW voltage level.

LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition.

q_n = Lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH clock transition.

X = Don't care.

↑ = LOW-to-HIGH clock transition.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	UNIT
V _{CC}	Supply voltage	7.0	V
V _{IN}	Input voltage	-0.5 to +5.5	٧
I _{IN}	Input current	-30 to +5	mA
V _{OUT}	Voltage applied to output in HIGH output state	-0.5 to +V _{CC}	٧
TA	Operating free-air temperature range	0 to 70	°C

74165

RECOMMENDED OPERATING CONDITIONS

	DADAMETER				
PARAMETER		Min	Nom	Max	UNIT
V _{CC}	Supply voltage	4.75	5.0	5.25	V
V _{IH}	HIGH-level input voltage	2.0		-	V
V _{IL}	LOW-level input voltage			+0.8	V
1 _{IK}	Input clamp current			-12	mA
Юн	HIGH-level output current			-800	μΑ
loL	LOW-level output current			16	mA
T _A	Operating free-air temperature	0		70	°C

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

	DADAMETED	TEOT	TEGT 00 VD T 0 V0 1		74165		
PARAMETER		TEST CONL	TEST CONDITIONS ¹		Typ ²	Max	UNIT
V _{OH}	HIGH-level output voltage	V _{CC} = MIN, V _{IH} = MIN, V _{IL} = MAX, I _{OH} = MAX		2.4	3.4		٧
VOL	LOW-level output voltage	V _{CC} = MIN, V _{IH} = MIN, V _I	V _{CC} = MIN, V _{IH} = MIN, V _{IL} = MAX, V _{OL} = MAX		0.2	0.4	٧
VIK	input clamp voltage	$V_{CC} = MIN, I_I = I_{IK}$				-1.5	٧
l _l	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5V				1.0	mA
	LIICH level innet assess	V - MAY V 0.4V	PL input			80	μΑ
I _{IH}	HIGH-level input current	$V_{CC} = MAX, V_I = 2.4V$	Other inputs			40	μΑ
l _{IL}	LOW-level input current	$V_{CC} = MAX, V_I = 0.4V$	PL input Other inputs			-3.2 -1.6	mA mA
los	Short-circuit output current ³	V _{CC} = MAX		-18		-55	mA
Icc	Supply current ⁴ (total)	V _{CC} = MAX			42	63	mA

NOTES:

- 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
- 2. All typical values are at $V_{CC} = 5V$, $T_A = 25$ °C.
- 3. Ios is tested with V_{OUT} = +0.5V and V_{CC} = V_{CC} MAX +0.5V. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
- With the outputs open, CE and CP at 4.5V, and a clock pulse applied to the PL input, I_{CC} is measured first with the Parallel Data inputs at 4.5V, then with the Parallel Data inputs grounded.

AC ELECTRICAL CHARACTERISTICS TA = 25°C, VCC = 5.0V

PARAMETER		PARAMETER TEST CONDITIONS		74 $C_L = 15 pF, R_L = 400 \Omega$		
f _{MAX}	Maximum shift frequency	Waveform 1	20		MHz	
t _{PLH} t _{PHL}	Propagation delay Clock to output	Waveform 1		24 31	ns	
t _{PLH} t _{PHL}	Propagation delay PL to output	Waveform 2		31 40	ns	
t _{PLH} t _{PHL}	Propagation delay D ₇ to Q ₇	Waveform 3		17 36	ns	
t _{PLH} t _{PHL}	Propagation delay D_7 to \overline{Q}_7	Waveform 3		27 27	ns	

NOTE:

Per industry convention, f_{MAX} is the worst case value of the maximum device operating frequency with no constraints on t_r, t_{fi}, pulse width or duty cycle.

December 4, 1985

AC SET-UP REQUIREMENTS TA = 25°C, VCC = 5.0V

			;		
	PARAMETER	PARAMETER TEST CONDITIONS		Max	UNIT
t _W	Clock pulse width	Waveform 1	25		ns
t _W	PL pulse width	Waveform 2	15		ns
t _S	Set-up time, D _S to clock	Waveform 4	20		ns
t _h	Hold time, D _S to clock	Waveform 4	0		ns
t _S (L)	Set-up time, LOW CE to clock	Waveform 4	30		ns
t _h	Hold time, CE to clock	Waveform 4	0		ns
ts	PL set-up time to clock	Waveform 2	45		ns
ts	Set-up time, D ₅ and D ₇ ⁽¹⁾ to PL	Waveform 5	10		ns

NOTE:

1. The remaining six Data inputs and D_S are LOW. Prior to test, HIGH level data is loaded into D_7 input.

TEST CIRCUITS AND WAVEFORMS

V_M = 1.3V for 74LS; V_M = 1.5V for all other TTL families.

Test Circuit For 74 Totem-Pole Outputs

DEFINITIONS

 R_L = Load resistor to V_{CC} ; see AC CHARACTERISTICS for value. C_L = Load capacitance includes jig and probe capacitance;

see AC CHARACTERISTICS for value.

 $\label{eq:RT} \begin{aligned} \mathbf{R}_T &= \text{Termination resistance should be equal to } \mathbf{Z}_{OUT} \\ &\quad \text{of Pulse Generators}. \end{aligned}$

D = Diodes are 1N916, 1N3064, or equivalent.

 $t_{\mathsf{TLH}},\,t_{\mathsf{THL}}$ Values should be less than or equal to the table entries.

Input	Pulse	Definition
-------	-------	------------

F 4 4 4 11 V	INPUT PULSE REQUIREMENTS							
FAMILY	Amplitude	Rep. Rate	Pulse Width	t _{TLH}	t _{THL}			
74	3.0V	1MHz	500ns	7ns	7ns			
74LS	3.0V	1MHz	500ns	15ns	6ns			
74S	3.0V	1MHz	500ns	2.5ns	2.5ns			

74165

AC WAVEFORMS

