

L4916

VOLTAGE REGULATOR PLUS FILTER

- FIXED OUTPUT VOLTAGE 8.5 V
- 250 mA OUTPUT CURRENT
- HIGH RIPPLE REJECTION
- HIGH LOAD REGULATION
- HIGH LINE REGULATION
- SHORT CIRCUIT PROTECTION
- THERMAL SHUT DOWN WITH HYSTERESIS
- DUMP PROTECTION

DESCRIPTION This circuit combined

This circuit combines both a filter and a voltage regulator in order to provide a high ripple rejection over a wider input voltage range.

A supervisor low-pass loop of the element prevents the output transistor from saturation at low input voltages.

The non linear behaviour of this control circuitry allows a fast settling of the filter.

BLOCK DIAGRAM

PIN CONNECTION (top view)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vi	Peak Input Voltage (300 ms)	40	V
Vi	DC Input Voltage	28	V
lo	Output Current	Internally Limited	
Ptot	Power Dissipation	Internally Limited	
T _{stg} , T _j	T _j Storage and Junction Temperature –		°C

THERMAL DATA

Symbol	Parameter		Value	Unit
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	80	°C/W
R _{th j-pins}	Thermal Resistance Junction-pins	Max	20	°C/W

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vi	Input Voltage				20	V
Vo	Output Voltage	V_i = 12 to 18 V I _O = 5 to 150 mA	8.1	8.5	8.9	V
$\Delta V_{I/O}$	Controlled Input-output Dropout Voltage	$V_i = 5 \text{ to } 10 \text{ V}$ $I_O = 5 \text{ to } 150 \text{ mA}$		1.6	2.1	V
ΔV_{O}	Line Regulation	$V_i = 12 \text{ to } 18 \text{ V}$ $I_0 = 10 \text{ mA}$		1	20	mV
ΔVo	Load Regulation	$\begin{array}{l} I_O = 5 \mbox{ to } 250 \mbox{ mA} \\ t_{on} = 30 \mu s \\ t_{off} = \geq 1 \mbox{ ms} \end{array}$		50	100	mV
ΔVo	Load Regulation (filter mode)	$\begin{array}{l} V_i = 8.5 \ V \\ I_O = 5 \ to \ 150 \ mA \\ t_{on} = 30 \ \mu s \\ t_{off} = \geq 1 \ ms \end{array}$		150	250	mV
lq	Quiescent Current	I _O = 5 mA		1	2	mA
Δlq	Quiescent Current Change	$V_i = 6 \text{ to } 18 \text{ V}$ $I_O = 5 \text{ to } 150 \text{ mA}$		0.05		mA
$\frac{\Delta V_{O}}{\Delta T}$	Output Voltage Drift	l _O = 10 mA		1.2		mV/∘C
SVR	Supply Voltage Rejection	$V_{iac} = 1 V_{rms}$ f = 100 Hz $I_0 = 150 \text{ mA}$ $V_{IDC} = 12 \text{ to } 18 \text{ V}$ $V_{IDC} = 6 \text{ to } 11 \text{ V}$		70 35(*)		dB dB
I _{SC}	Short Circuit Current		250	300		mA
T _{on}	Switch On Time	I _O = 150 mA V _i = 5 to 11 V V _i = 11 to 18 V		500(*) 300		ms ms
TJ	Thermal Shutdown Junction Temperature			145		°C

FLECTRICAL CHARACTERISTICS	$(T_{omb} = 25 \circ C \cdot V_i =$	13.5V test circuit of fig.	1 unless otherwise specified)
ELECTRICAL CHARACTERISTICS	$(1amb - 23, 0, v_1 -$	13.3 v, test of the order of the or	r, unicesounerwise specifieu)

(*) Depending of the $C_{\ensuremath{\mathsf{FT}}}$ capacitor.

Figure 2 : P.C. Board and Component Layout of Fig. 1 (1 : 1 scale).

PRINCIPLE OF OPERATION

During normal operation (input voltage upper than $V_{I \text{ MIN}} = V_{OUT \text{ NOM}} + \Delta V_{I/O}$). The device works as a normal voltage regulator built around the OP1 of the block diagram.

The series pass element use a PNP-NPN connection to reduce the dropout. The reference voltage of the OP1 is derived from a REF through the OP2 and Q3, acting as an active zener diode of value VREF.

In this condition the device works in the range (1) of the characteristic of the non linear drop control unit (see fig.3).

The output voltage is fixed to its nominal value:

$$V_{OUT NOM} = V_{REF} \left(1 + \frac{R1}{R2}\right) = V_{CFT} \left(1 + \frac{R1}{R2}\right)$$

 $\frac{R1}{R2} = INTERNALLY FIXED RATIO = 2.4$

The ripple rejection is quite high (70 dB) and independent from C_{FT} value.

On the usual voltage regulators, when the input voltage goes below the nominal value, the regulation transistors (series element) saturate bringing the system out of regulation making it very sensible to every variation of the input voltage. On the contrary, a control loop on the L4916 consents to avoid the saturation of the series element by regulating the value of the reference voltage (pin 2). In fact, whenever the input voltage decreases below V_{I MIN} the supervisor loop, utilizing a non linear OTA, forces the reference voltage at pin 2 to decrease by discharging C_{FT} . So, during the static mode, when the

input voltage goes below V_{MIN} the drop out is kept fixed to about 1.6V. In this condition the device works as a low pass filter in the range (2) of the OTA characteristic. The ripple rejection is externally adjustable acting on C_{FT} as follows :

$$SVR (jw) = \left| \frac{V_{I} (jw)}{V_{out} (jw)} \right| =$$

$$1 + \frac{10^{-6}}{\frac{gm}{jwC_{FT}} (1 + \frac{R1}{R_{2}})}$$

Where:

gm = 2 . $10^{-5} \Omega^{-1}$ = OTA'S typical transconductance value on linear region

$$\frac{R1}{}$$
 = fixed ratio

R2

 C_{FT} = value of capacitor in μF

The reaction time of the supervisor loop is given by the transconductance of the OTA and by C_{FT} . When the value of the ripple voltage is so high and its negative peak is fast enough to determine an istantaneous decrease of the dropout till 1.2 V, the OTA works in a higher transconductance condition [range (3) of the characteristic] and discharge the capacitor rapidously.

If the ripple frequency is high enough the capacitor won't charge itself completely, and the output voltage reaches a small value allowing a betterripple rejection; the device's again working as a filter (fast transient range).

With $C_{FT} = 10 \,\mu\text{F}$; f = 100 Hz a SVR of 35 is obtained.

57

Figure 6 : Vo vs. Supply Voltage.

Figure 5 : Supply voltage Rejection vs. Frequency.

Figure 7 : Quiescent Current vs. Input Voltage.

Figure 8 : Dropout vs. Load Current.

Figure 9 : Inhibit Function Realized on C_{FT} Pin.

ЫМ	mm			inch			
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
A		3.3			0.130		
a1	0.7			0.028			
В	1.39		1.65	0.055		0.065	
B1	0.91		1.04	0.036		0.041	
b		0.5			0.020		
b1	0.38		0.5	0.015		0.020	
D			9.8			0.386	
E		8.8			0.346		
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			7.1			0.280	
I			4.8			0.189	
L		3.3			0.130		
Z	0.44		1.6	0.017		0.063	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics © 2000 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com

57