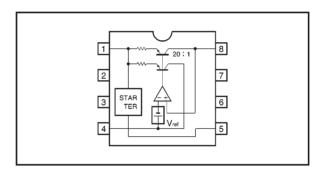
# General use electronic governor BA6220

The BA6220 is a monolithic IC designed for controlling the speed of general-purpose DC motors.

The IC consists of a reference voltage generator, current multiplier, comparator, and start-up circuit. The speed of DC motor is controlled by detecting the counter-electromotive force generated by the motor.

Various DC motors can be driven by changing the external constants. A large power dissipation is allowed by grounding the pin connected with the IC substrate.


#### Applications

Radio cassette tape recorders

#### Features

- 1) Wide range of operating voltage.  $(3.5 \sim 16 \text{V})$
- 2) Large starting torque at low supply voltage.
- 3) Large power dissipation allowable by using the PCB as a heat sink.
- Various DC motors can be driven by changing the external constants.

#### Block diagram



#### ■Absolute maximum ratings (Ta = 25°C)

| Parameter            | Symbol | Limits | Unit | Conditions      |  |
|----------------------|--------|--------|------|-----------------|--|
| Power supply voltage | Vcc    | 18     | V    | _               |  |
| Power dissipation    | Pd     | 1.4*   | W    | PCB: 9cm2 t=1.0 |  |

<sup>\*</sup> Reduced by 11.2 mW for each increase in Ta of 1°C over 25°C.

#### • Recommended operating conditions (Ta = 25°C)

| Parameter            | Symbol | Min. | Тур. | Max. | Unit | Conditions    |  |
|----------------------|--------|------|------|------|------|---------------|--|
| Power supply voltage | Vcc    | 3.5  | _    | 16   | ٧    | Load: 8g - cm |  |

Motor driver ICs BA6220

## ●Electrical characteristics (unless otherwise noted, Ta = 25°C and Vcc = 12V)

| Parameter                                    | Symbol                                               | Min. | Тур.  | Max. | Unit   | Conditions                                      | Measurement circuit |
|----------------------------------------------|------------------------------------------------------|------|-------|------|--------|-------------------------------------------------|---------------------|
| Bias current                                 | l <sub>4</sub>                                       | 0.5  | 0.8   | 1.2  | mA     | R <sub>M</sub> =180 Ω                           | Fig.1 (d)           |
| Output saturation voltage                    | Vsat                                                 | _    | 1.5   | 2.0  | ٧      | Vcc=4.2V, R <sub>M</sub> =4.4Ω                  | Fig.1 (c)           |
| Reference voltage                            | Vref                                                 | 1.10 | 1.27  | 1.40 | ٧      | I <sub>M</sub> =10mA                            | Fig.1 (a)           |
| Current constant                             | К                                                    | 18   | 20    | 22   | _      | R <sub>M1</sub> =44Ω, R <sub>M2</sub> =33Ω      | Fig.1 (b)           |
| Reference voltage characteristic             | $\frac{\Delta V_{ref}}{V_{ref}} /\!\! \Delta V_{CC}$ | _    | 0.06  | _    | %/V    | Iм=100mA, Vcc=6.3~16V                           | Fig.1 (a)           |
| Current constant voltage characteristic      | $\frac{\Delta K}{K} \Delta V_{CC}$                   | _    | 0.4   | _    | %/V    | I <sub>M</sub> =100mA, V <sub>CC</sub> =6.3~16V | Fig.1 (b)           |
| Reference voltage current characteristic     | $\frac{\Delta V_{ref}}{V_{ref}} / \Delta I_{M}$      | _    | -0.02 | _    | % / mA | Iм=30~200mA                                     | Fig.1 (a)           |
| Current constant current characteristic      | <u>\Delta K</u> \sqrt{\Delta Im}                     | _    | -0.02 | _    | % / mA | Iм=30~200mA                                     | Fig.1 (b)           |
| Reference voltage temperature characteristic | $\frac{\Delta V_{ref}}{V_{ref}} \Delta T_a$          | _    | 0.01  | _    | %/°C   | I <sub>M</sub> =100mA, T <sub>a</sub> =−25~75°C | Fig.1 (a)           |
| Current ratio temperature characteristic     | <u>ΔΚ</u> /ΔΤα                                       | _    | 0.01  | _    | %/°C   | I <sub>M</sub> =100mA, T <sub>a</sub> =−25~75°C | Fig.1 (b)           |

#### Measurement circuits

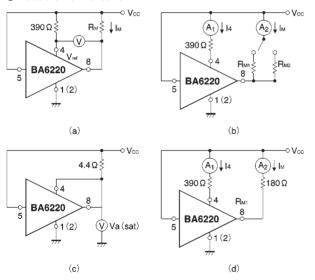



Fig.1

### Application example

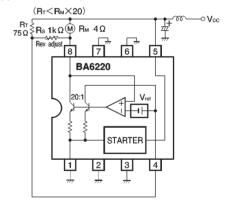
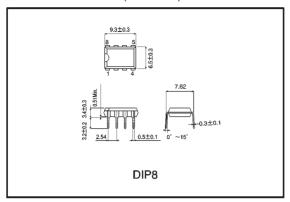




Fig.2

Motor driver ICs BA6220

# ●External dimensions (Units: mm)

