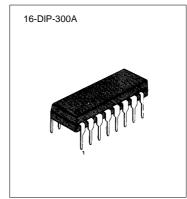
INTRODUCTION

KA22427C is a monolithic integrated circuit designed for the portable AM/FM radio or AM/FM clock radios.


FUNCTIONS

•AM Local OSC
• AM/FM IF AMP • AM RF & MIX • AM AGC • AM/FM DET

 Audio Power AMP
 FM AFC Control Regulator

FEATURE

- Portable AM/FM 1-chip radio
- ullet Wide operating supply voltage range: V_{CC} = 3V ~ 12V (Approximately) (Depending on the internal regulator tolerance)
- Recommended operating suply voltage: $V_{CC} = 4.5 \text{V} \sim 9 \text{V}$

ORDERING INFORMATION

			Device	Package	Operating Temperature
			KA22427C	16-DIP-300A	20°C ~+70°C
V _{cc}	4.5V	6.0V	7.5V	9.OV	Line Operated
8Ω	0	0	0	X	X
16Ω	0	0	0	0	X
45Ω	0	0	0	0	0

- On using AC line as an internal shunt regulator mode, it is possible to use low cost application without a transformer (approximately 42mA).
- IF AMP gain is determined by DC voltage appeared at IC Pin 16.
- Power output: $P_0 = 0.28W$ (Min.) at THD = 10% ($V_{CC} = 5.5V/8\Omega$).

BLOCK DIAGRAM

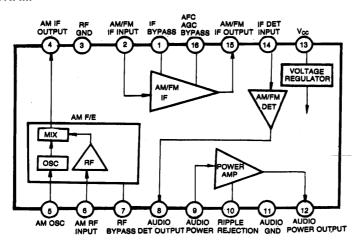
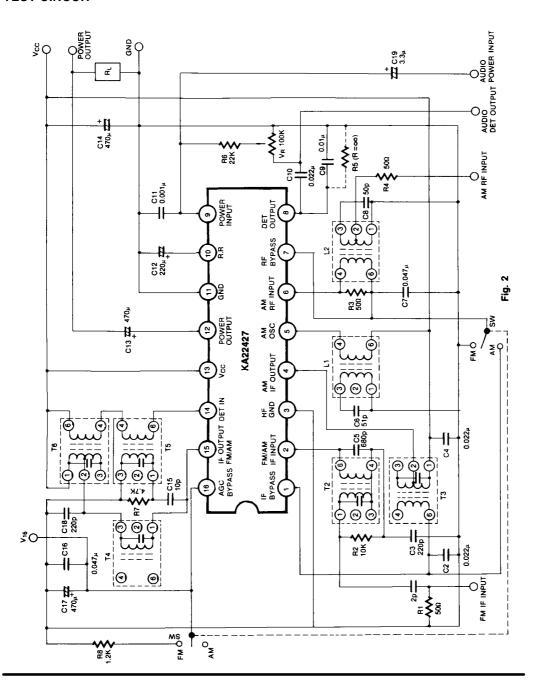


Fig. 1

ABSOLUTE MAXIMUM RATINGS (Ta = 25)

Character istic	Symbol	Value	Unit
Supply Voltage	V _{CC}	13	V
Power Dissipation	P _D	600	mW
Supply Current	I _{cc}	44	mA
Thermal Resistance Junction to Ambient	R _{EJA}	100	°C /W
Operating Temperature	T _{OPR}	-20 ~ +70	°C
Storage Temperature	T _{STG}	-55 ~ +150	°C


ELECTRICAL CHARACTERISTICS

(Ta =25°C, V_{CC} = 5.5V, fm = 1KHz, AM: f=1MHz, 30% Mod, FM: f =10.7MHz Δf = 22.5KHz, Unless otherwise specified)

	Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
	Qulescent Circuit Current	Icca	SW: FM, V _{CC} = 3V	7	12	17	mA
	Quiescent Circuit Current	ICCQ	SW: FM, V _{CC} = 9V	10	17	23	IIIA
FM	Pin 16 Terminal Voltage	V ₁₆ (FM)	SW: FM, $V_{cc} = 9V$, $V_i = 0$	2.0	2.4	3.1	V
	-3dB Limiting Sensitivity	$V_{\text{I(LIM)}}$	SW: FM, -3dB $V_{16} = 2.4V$, V_R Min		57		dB
	Internal Regulated Vtg.	V _{CC}	SW: AM, I _{CC} = 42mA	12	13.2	14.0	V
	Pin 16 Voltage	V ₁₆ (AM)	SW: AM, $V_{CC} = 9V$, $V_I = 0$	1.4		1.9	V
ΔМ	AM Maximum Sensitivity	S _{MAX}	SW: AM, V _{CC} = 12V	1.5	3.0		V
7 (101		SMAX	$V_I = 37 dB\mu$, $R_L = 8\Omega$	1.5	5.0		
	Signal to Noise Ratio	S/N	$V_I=37.5 dB \mu$, $R_L=8 \Omega$	15	20		dB
	Signal to Noise Ratio	3/11	$P_0 = 50 \text{mW}$	13	20		45
	Output Power	Po	f = 1KHz, THD = 10%	0.28			w
	- Output i owei	10	V_R Min, $R_L = 8\Omega$	0.20			**
PWR			$I_{CC} = 42mA, R_L = 45\Omega$				
AMP	Total Harmonic Distortion	THD	$f = 1KHz, V_0 = 2V$		0.5	4.0	%
			V _R Min				
	Voltage gain	G_{V}	$f = 1kHZ, R_L = 8\Omega$		41		dB
	voltage galli	Gγ	$P_O = 50 \text{mW}$		41		ub

TEST CIRCUIT

APPLICATION INFORMATION - EXTERNAL COMPONENTS

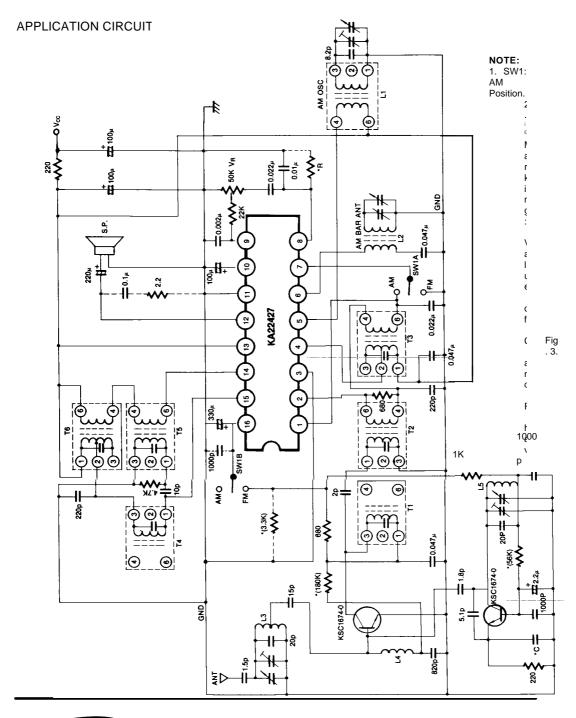
Parts Purnose		T	Influence			
Number	Purpose	Typical	Smaller Than Typ	Greater Than Typ		
DE	AM Gain	47ΚΩ	Law ANA Cain	AGC Distortion		
R5	Control	(33K ~∞)	Low AM Gain	Increase, High Gain		
	FM Detector		Low Detector Output,	Sharp IF AMP Curve		
R7	Damper	4.7ΚΩ	Stable IF Gain,			
			Low FM Gain			
R8	FM Gain	470	Low FM Gain	High Gain, but Noise		
Ko	Adjust	470		Increase		
C2	IF Bypass	0.022μF	Should Not Be Less Than	High IF Gain,		
	п Буразз	0.022μF	0.005μF	S/N Ratio Degrade		
C4	IF Filter	0.022015	Removal May Cause IF	No Influence		
	IF FIILEI	0.022μF	Oscillation			
				Using over 1µF Will Cause FM		
C7	AM Bypass	0.047μF	Low Gain	Distortion at Small		
				Signal		
00	Detector	0.01μF	Unstable IF AMP	Poor FM Frequency		
C9	Filter		Oscillation	Response		
	Audio		Lower Sensitivity,	Bass Boost		
C10	Coupling	0.022μF	Poor Low Frequency	Affects De-emphasis		
			Response	Curve		
C11	Audio Input	0.004	Audio Oscillation	Poor Response		
	High-Cut	0.001μF				
C12	Ripple Filter	220uF	Poor Frequency Response	Improve AC Hum		
OIZ		220μΓ	& Low Gain			
C13	Audio Output	470uF	Poor Low Frequency	Can Achieve Optimum		
013	Coupling	470μΓ	Response	Output Power		
C14	Power Line	470uF	Poor AC Hum	Improve AC Hum		
014	Filter	470μΓ				
C15	FM Detector	10pF	Narrow IF Bandwidth	Wide IF Bandwidth		
	Phase-Shift	1001				
C16	High Freq.	0.047μF	Removal Will Cause	No Influence		
	(IF) Bypass	0.017 με	FM Oscillation			
	AN AGC Time		Not Recommend to			
C17	Constant and	0.047.15	Charge			
CII	High Frequency	0.047μF				
	(IF) Bypass					

FUNCTION DESCRIPTION (Pin 16 DC Voltage)

1. IF Gain Grouping Table

(1) Test Condition: $V_{CC} = 9V$ (Pin 13). Pin 8 resistance (AM) =47K Ω Pin 16 resistance (FM) = 1.2K Ω

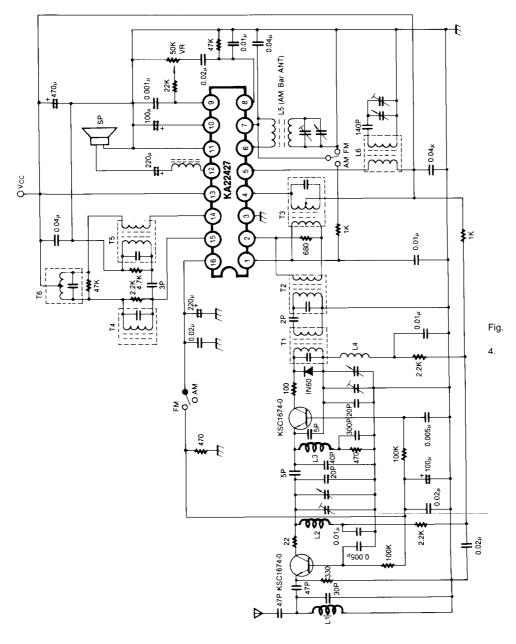
(2) Grouping Table


V16(AM) V16(FM)	1.4 - 1.7V
2.4 - 2.85V	2B

IF gain is determined by DC voltage appeared at IC Pin 16.
 The DC voltage at Pin 16 to the following values:
 AM = 1.4 ~ 1.65V (DC)
 FM = 1.9 ~ 2.10V (DC)

AM gain can be adjusted by the loading resistor value of Pin 8 (AM) from $33\text{k}\Omega$ to infinity. FM gain can be adjusted by the loading resistor value of Pin 16 (FM) from $3\text{k}\Omega$ to 680Ω . Recommended resistance (Pin 8, Pin 16).

Pin 8 (AM) = 47K Ω Pin 16 (FM) = 470Ω



COIL SPECIFICATION 1

				ı		T
Coil No.	f	\mathbf{q}_{o}	Turns	s	Co	Connections
T1	10.7MHz	120	1-3	8T	150pF	
T2	10.7MHz	70min	1-3 4-6	11T 2T	75±5pF	
T3 (T6)	455KHz	80min	1-2 2-3 4-6	91T 55T 6T	180±5pF	
T4	10.7MHz	45min	1-3	11T	82±3pF	(3) (4) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9
T5	10.7MHz	25min	1-3 4-6	7T 7T	180pF	
L1	AM Local Oscillator	90min	1-3 4-6	86T 7T		
L2	AM ANT	200	1-2 (L = 560 μ) _H 3-4	138T 9T		Core: 10 mm ø × 55 mm
L3	FM ANT		0.8 mm¢ UEW TAP	5T 0.5T		① ② ③④ - V.C GND Pin 6 GND
L4	Trap		0.32 mmφ UEW	10T		7 mm
L5	FM Oscillator		0.8 mmφ UEW	4T	.7	7 mm + 5 mm
L			1			7 mm = 5 mm

APPLICATION CIRCUIT 2

COIL SPECIFICATION 2

Coil No.	f	\mathbf{Q}_0	Tu	rns	C.L.	Connections
T1	10.7MHz	90	1-3 4-6	113	82pF	
T2	10.7MHz	60	1-3 4-6	52	390 pF	(3) (4) (2) (5) (6) (6) (7)
Т3	455 KHz	100	1-2 2-3 4-6	127 28 10	180 pF	
T4	10.7 MHz	45(Min)	1-3	11	82 pF	
T5	10.7 MHz	25(Min)	1-3 4-6	77	180 pF	
Т6	455 KHz	100	1-2 2-3	50 50	390 pF	
L6	796KHz	100	1-3 4-6	100 10	360μΗ	

